Create a RAG pipeline object on Embedchain. This is the main entrypoint for a developer to interact with Embedchain APIs. A pipeline configures the llm, vector database, embedding model, and retrieval strategy of your choice.

Attributes

local_id
str
Pipeline ID
name
str
Name of the pipeline
config
BaseConfig
Configuration of the pipeline
llm
BaseLlm
Configured LLM for the RAG pipeline
db
BaseVectorDB
Configured vector database for the RAG pipeline
embedding_model
BaseEmbedder
Configured embedding model for the RAG pipeline
chunker
ChunkerConfig
Chunker configuration
client
Client
Client object (used to deploy a pipeline to Embedchain platform)
logger
logging.Logger
Logger object

Usage

You can create an embedchain pipeline instance using the following methods:

Default setting

Code Example
from embedchain import App
app = App()

Python Dict

Code Example
from embedchain import App

config_dict = {
  'llm': {
    'provider': 'gpt4all',
    'config': {
      'model': 'orca-mini-3b-gguf2-q4_0.gguf',
      'temperature': 0.5,
      'max_tokens': 1000,
      'top_p': 1,
      'stream': False
    }
  },
  'embedder': {
    'provider': 'gpt4all'
  }
}

# load llm configuration from config dict
app = App.from_config(config=config_dict)

YAML Config

from embedchain import App

# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")

JSON Config

from embedchain import App

# load llm configuration from config.json file
app = App.from_config(config_path="config.json")