Create a RAG pipeline object on Embedchain. This is the main entrypoint for a developer to interact with Embedchain APIs. A pipeline configures the llm, vector database, embedding model, and retrieval strategy of your choice.
Attributes
Configuration of the pipeline
Configured LLM for the RAG pipeline
Configured vector database for the RAG pipeline
Configured embedding model for the RAG pipeline
Client object (used to deploy a pipeline to Embedchain platform)
Usage
You can create an embedchain pipeline instance using the following methods:
Default setting
from embedchain import App
app = App()
Python Dict
from embedchain import App
config_dict = {
'llm': {
'provider': 'gpt4all',
'config': {
'model': 'orca-mini-3b-gguf2-q4_0.gguf',
'temperature': 0.5,
'max_tokens': 1000,
'top_p': 1,
'stream': False
}
},
'embedder': {
'provider': 'gpt4all'
}
}
# load llm configuration from config dict
app = App.from_config(config=config_dict)
YAML Config
from embedchain import App
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
JSON Config
from embedchain import App
# load llm configuration from config.json file
app = App.from_config(config_path="config.json")