.search()
enables you to uncover the most pertinent context by performing a semantic search across your data sources based on a given query. Refer to the function signature below:
Parameters
Number of relevant documents to fetch. Defaults to 3
Returns
Return list of dictionaries that contain the relevant chunk and their source information.
Usage
Refer to the following example on how to use the search api:
from embedchain import App
# Initialize app
app = App()
# Add data source
app.add("https://www.forbes.com/profile/elon-musk")
# Get relevant context using semantic search
context = app.search("What is the net worth of Elon?", num_documents=2)
print(context)
# Context:
# [
# {
# 'context': 'Elon Musk PROFILEElon MuskCEO, Tesla$221.9BReal Time Net Worth ...',
# 'metadata': {
# 'source': 'https://www.forbes.com/profile/elon-musk',
# 'document_id': 'some_document_id',
# 'score': 0.404,
# }
# },
# {
# 'context': 'company, which is now called X.Wealth HistoryHOVER TO REVEAL NET WORTH ...',
# 'metadata': {
# 'source': 'https://www.forbes.com/profile/elon-musk',
# 'document_id': 'some_document_id',
# 'score': 0.435,
# }
# }
# ]